"IEC disected"

This document describes the IEC-bus informatiohey&d during the development of the 1541-111.

J. Derogee Page 1 2012-08-08

Ccontents

(T a1 = LN o) o PSPPSR 3
2 A brief history of the IEC-DUS......... e 4
3 HOW THE VIC/64 SERIAL BUS WORKS........coutt e e eee ettt e e e e enennn e e e eeens 5
4 Serial DUS PINOUL. ... e e e e e e e e e e e e e et e e e aa e e eeta s 12
5 Bytes sequences Of SPECIfiC OPEratiONS.cccciiiiiii i e e e e e e 13
0 Lo T g =1 o] 01T =11 [0 o TSP 14
00 00 R o = To [1 o = 0] €0 T | = o SR 14
5.1.2 SQVING @ PIrOGIAIM....ceuuuuuuuuunnnnss mmmmmmeeeeeesennssnnnnaaaaaaeaaaaateeeeessaaaaneeeesssssnnaaessnaeeens 14
0 IRC R o= To [T To o) = We |1 f=Tox (0] o Y2 15
5.2 “FILE NOT FOUND” SItUBLION:.......iiiiiiceeeeeeieeeee e e e e e e e e e e e s e s s s eaeeeeee e e e e s s snnnnnnes 17
5.3 Abort current action (for example: pressing/stop during LOAD):.........eeiiieeeeeeeeeess e 17
5.4 Reading the error Channel:........ ... e 18
6 The difference between a 2-line and a singledomamand to the 1541 drive 19
7 How to change the device number without chantiBgumpers.............oooovvviiiiiiiiiiiscmenen. 22
8 Commodore 64, serial bus related KERNAL fUNCHONS.........cooooiiiiiiiiiiiiiie e eeeiie 23
9 Commodore additional IEC-DUS INfO..........coiiiiiii e 25
10 HOW fASTIOAAEIS WOTK........uiiiiiiiiiiiiieteeee ettt e e e e e e e e e e e e e e e aaa e 28
10.1 The Final Cartridge Il (FC3) load/save pratoc.............ccoeveeeiuueimmmiiiiinaneeeeeeeeeeeeeeiannnn 28
IO 0 A I I = Vo [T T [= o1 (o [28
10.1.2 Transferring the load/save routines to theed................oovviiiiiiiiinn e, 28
10 I 10 - T [T 30
Fastloader iN fre@Zed filES. et e 32
L0.1.4 SAVINGttt ettt ettt e e e e e a e e e e e e e eaaaas 33
J. Derogee Page 2 2012-08-08

1 General info

The serial (IEC) bus uses a synchronous protod¢wrd are three lines: DATA, CLK, and -ATN.
The lines are driven by a 6526 CIA on the C-64ouigh open-collector inverters (7406's); 1 kohm
pull-up resistors are used. The 1541 and 157 ks the same, but they don't drive the -ATN
line, and they use 6522 VIA's. The lines are aésalr directly by the C-64. Address $DDO00 (PA of
CIA2) is used by the C-64. Bit 3 is ATN OUT, biis}-CLK OUT, bit 5 is -DATA OUT, bit 6 is
CLK IN, and bit 7 is DATA IN.

A device's identity is usually stored in RAM aftavot up, so a drive POKE will let it change to
anything in the range 0-30. The C64 kernal (unpegshed) prevents 0-3 from actually going down
the serial bus, that’'s why these are marked wighctilour “grey” in the table below.

CBM Device ID’s

Device ID| Device type

4 Printer
5 Printer
6 Typically plotter device
7 Second plotter?
Also used by a freeze cartridges named TurboTagdhht's only an internal definitign
8 Primary Disk Drive
9 Disk Drive
10 Disk Drive
Also used by some serial-to-parallel printer irded cartridges
11 Disk Drive
12 Disk Drive
13 Disk Drive
14 Disk Drive

Sometimes used by some serial-to-parallel primieriace cartridges

15 Disk Drive

16-30 Unknown

31 Device #31 is reserved as a command to all device
Devices will not ignore a command to #31, since ttennot do this. Sending a TALK command to #31msddNTALK, sending @
LISTEN to #31 means UNLISTEN. This however is jasttatement found on the web and has not beeteegeh§ other sources.

Reqgarding the signals on the bus: Regarding the data on the bus:
OV = TRUE or PULLED DOWN 0V = logical 0
5V = FALSE or RELEASED 5V =logical 1

Bytes are sent with low bit first.
Data is valid on rising edge of clock

J. Derogee Page 3 2012-08-08

2 A Dbrief history of the IEC-bus
By Jim Butterfield

As you know, the first Commodore computers usedHf&E bus to connect to peripherals such as disk
and printer. | understand that these were availably from one source: Belden cables. A couple of
years into Commodore's computer career, Belden weainbf stock on such cables (military contract?
who knows?). In any case, Commodore were in quiig: they made computers and disk drives, but
couldn't hook 'em together! So Tramiel issued tlieio "On our next computer, get off that bus. k®a

it a cable anyone can manufacture". And so, sgamrith the VIC-20 the serial bus was born. It was
intended to be just as fast as the IEEE-488 itacaal.

"Technically, the idea was sound: the 6522 VIApdhas a "shift register” circuit that, if tickledttvthe
right signals (data and clock) will cheerfully et 8 bits of data without any help from the CPAL

that time, it would signal that it had a byte to dmlected, and the processor would do so, using an
automatic handshake built into the 6522 to trigper next incoming byte. Things worked in a similar
way outgoing from the computer, too. We early PEBBN¥Cfreaks knew, from playing music, that there
was something wrong with the 6522's shift registérinterfered with other functions. The rule was
turn off the music before you start the tape! (Eht register was a popular sound generator)t Bu

the Commodore engineers, who only made the chim'tdknow this. Until they got into final checkout
of the VIC-20.

By this time, the VIC-20 board was in manufactue.new chip could be designed in a few months
(yes, the silicon guys had application notes ablmeiproblem, long since), but it was TOO LATE!

A major software rewrite had to take place thatngfeal the VIC-20 into a "bit-catcher" rather than a
"character-catcher”. It called for eight timesmnasch work on the part of the CPU; and unlike thié sh
register plan, there was no timing/handshake diack. The whole thing slowed down by a factor of
approximately 5 to 6.

When the 64 came out, the problem VIA 6522 chip been replaced by the CIA 6526. This did not
have the shift registerproblem which had causedbteoon the VIC-20, and at that time it would have
been possible to restore plan 1, a fast serial INate that this would have called for a redesigthe
1540 disk drive, which also used a VIA. As besth estimate - and an article in the IEEE Spectrum
magazine supports this - the matter was discussithvwCommodore, and it was decided that VIC-20
compatibility was more important than disk spedelerhaps the prospect of a 1541 redesign was an
important part of the decision, since current ineers needed to be taken into account. But tp kiee
Commodore 64 as a "bit-banger”, a new problem arose

The higher-resolution screen of the 64 (as comp#weithe VIC-20) could not be supported without
stopping the CPU every once in a while. To be exastery 8 screen raster lines (each line of takg,
CPU had to be put into a WAIT condition for 42 noiseconds, so as to allow the next line of screen te
and color nybbles to be swept into the chip.(Maretwould be needed if sprites were being used). Bu
the bits were coming in on the serial bus fastanttinat: a bit would come in about every 20uSeo! S
the poor CPU, frozen for longer than that, wouldssnsome serial bits completely! Commodore's
solution was to slow down the serial bus even mbhat's why the VIC-20 has a faster serial bus than
the 64, even though the 64 was capable, technjadliyunning many times faster. Fast disk finayre
into its own with the Commodore 128

J. Derogee Page 4 2012-08-08

3 HOW THE VIC/64 SERIAL BUS WORKS
By Jim Butterfield (Compute! July 1983, Copyrighted 1983 by J.Butterfield)

The Serial bus connects VIC or Commodore 64 tonggor peripherals, especially disk and tape.
The workings of this interface have been a soufdeafilement to most of us. We know that it's
somehow related to the IEEE-488 bus which is useBET and CBM computers. But it has fewer
wires, and it's slower. For anyone interestednierfacing details, this article will clear up the
mystery.

GROUND RULES

To understand the workings of this bus, you mustkwbrough a few concepts. Later, we'll get

technical for this who want it. The bus, like ti&EE, has two modes of operation: Select mode, in
which the computer calls all devices and asks fepecific device to remain connected after the
call ("Jones, would you stay in my office after teeting?"); and Data mode, in which actual

information is transmitted ("Jones, I've decidedjiee you a raise"). Select mode is invoked by
the use of a special control line called "Attenfioor ATN. By using Select mode, you can call in

any device you choose, but you may need to do tefere you transmit data. You might have

several disk files in progress - writing some aadding others — and when you select the disk,
device 8, you'll still need to specify which "pad! the disk you want to reach: subchannel 3,
subchannel 15, or whatever. To do this, we usseadhdary address" which usually signals a
subsystem within a specific device. That goessrpart of the command during Select mode.
Finally, we may need to send other control infoioratthe name of the file we wish to open, for

example. That's not data; it's device setup inftionaso we also send it in Select mode. But the
main part is: you select a device, and then yod s$eiit or receive from it. Finally, you shut itfo

All devices are connected, but only the one yowehsslected will listen or talk.

If you're not into volts and signals and things thst of this article may not do much for you. |

want to talk about technical aspects of the bustFall the data flows over two wires; They are

called the Clock line and the Data line. There @treer wires used for control purposes, but the
data uses only the two main ones. All wires conteell devices. The wires don't go "one way";

any device can put a ground on a signal line, dndtlaer devices will see it. Indeed, that's the
secret of how it works: each wire serves as a comsignal bus.

When no device puts a ground on a signal lineytigage rises to almost five volts. We call this
the "false" logic condition of the wire. If any\dee rounds the line, the voltage drops to zero; we
call this the "true" condition of the line. Notbkat if two devices signal "true” on a line (by
grounding it), the effect is exactly the same amily one has done so: the voltage is zero antsthat
that. We can summarize this as an important sketgof rules:

-A line will become "true” (PULLED DOWN, or OM) one or more devices signal true;
-A line will become "false” (RELEASED, or 5Vty if all devices signal false.

Remember that we have several lines, but the impbdnes for information transmission are the
Clock line and the Data line. Let's watch themkvor

J. Derogee Page 5 2012-08-08

TRANSMISSION: STEP ZERO

Let's look at the sequence when a character istabdne transmitted. At this time, both the Clock
line and the Data line are being held down to the ttate. With a test instrument, you can't tell
who's doing it, but I'll tell you: the talker is ldang the Clock line true, and the listener is hogd
the Data line true. There could be more than dsterler, in which case all of the listeners are
holding the Data line true. Each of the signalghhbe viewed as saying, "I'm here!".

STEP 1: READY TO SEND

Sooner or later, the talker will want to talk, asghd a character. When it's ready to go, it retease
the Clock line to false. This signal change migattranslated as "I'm ready to send a character."
The listener must detect this and respond, buiesd't have to do so immediately. The listener will
respond to the talker's "ready to send" signal whkienit likes; it can wait a long time. If it's a
printer chugging out a line of print, or a diskwdriwith a formatting job in progress, it might hold
back for quite a while; there's no time limit.

STEP 2: READY FOR DATA

When the listener is ready to listen, it releatesData line to false. Suppose there is more than
one listener. The Data line will go false only whel listeners have released it - in other words,
when all listeners are ready to accept data. Whppéns next is variable. Either the talker will
pull the Clock line back to true in less than 20@mseconds - usually within 60 microseconds - or
it will do nothing. The listener should be watafirand if 200 microseconds pass without the
Clock line going to true, it has a special taskéoform: note EOI.

INTERMISSION: EOI

If the Ready for Data signal isn't acknowledgedhmy talker within 200 microseconds, the listener
knows that the talker is trying to signal EOl. E@hich formally stands for "End of Indicator,"
means "this character will be the last one." '# & sequential disk file, don't ask for more: ¢her
will be no more. If it's a relative record, thati® end of the record. The character itself still

be coming, but the listener should note: here camme$ast character. So if the listener sees tide 20
microsecond time-out, it must signal "OK, | noticéet EOI" back to the talker, | does this by
pulling the Data line true for at least 60 micrassds, and then releasing it. The talker will then
revert to transmitting the character in the usuay;wvithin 60 microseconds it will pull the Clock
line true, and transmission will continue. At tlpsint, the Clock line is true whether or not we
have gone through the EOI sequence; we're backoonanon transmission sequence.

STEP 3: SENDING THE BITS

The talker has eight bits to send. They will gé without handshake; in other words, the listener
had better be there to catch them, since the tatkatt wait to hear from the listener. At this i
the talker controls both lines, Clock and Data. t& beginning of the sequence, it is holding the
Clock true, while the Data line is released todalshe Data line will change soon, since we'lldsen
the data over it. The eights bits will go out frtime character one at a time, with

the least significant bit going first. For exampfahe character is the ASCII question mark, whic

is written in binary as 00011111, the ones willa@d first, followed by the zeros. Now, for each
bit, we set the Data line true or false accordmgvhether the bit is one or zero. As soon assthat'
set, the Clock line is released to false, signgllidata ready.” The talker will typically have & b

in place and be signalling ready in 70 microsecomdess. Once the talker has signalled "data
ready,"” it will hold the two lines steady for abf# 20 microseconds timing needs to be increased to

J. Derogee Page 6 2012-08-08

60 microseconds if the Commodore 64 is listeningees the 64's video chip may interrupt the
processor for 42 microseconds at a time, and wittimiextra wait the 64 might completely miss a
bit. The listener plays a passive role here; idsemthing, and just watches. As soon as it dees t
Clock line false, it grabs the bit from the Dataeliand puts it away. It then waits for the clacle |

to go true, in order to prepare for the next biha#' the talker figures the data has been held for a
sufficient length of time, it pulls the Clock liteue and releases the Data line to false. Then it
starts to prepare the next bit.

STEP 4: FRAME HANDSHAKE

After the eighth bit has been sent, it's the listanturn to acknowledge. At this moment, the €loc

line is true and the Data line is false. The hstemust acknowledge receiving the byte OK by
pulling the Data line to true. The talker is nowtebang the Data line. If the listener doesn't pull
the Data line true within one millisecond - one uband microseconds - it will know that

something's wrong and may alarm appropriately.

STEP 5: START OVER

We're finished, and back where we started. Theetak holding the Clock line true, and the
listener is holding the Data line true. We're reéatystep 1; we may send another character - unless
EOI has happened. If EOI was sent or receivediglaist transmission, both talker and listener "let
go." After a suitable pause, the Clock and Datediare released to false and transmission stops.

REPEAT
FOR
EACH
BIT

b

G i

DATA
LINE
T
A
4
nL ah

I
= 5
Z 1
94 R R R g SRR 2
« e % T A 4 & S i
= h | e L] w
"E a 2. 3,;5 iﬁg Eumg. :52 ;pﬂé %;EE Ewz z= ‘%s 3
=V = g8 , >W2 ﬁ-zg o] f2 UE 3 a9 TXp
9.3, 1834 f8iy ﬁﬁéh,i% B2, $32ie2gs 20 28 FiF ¢
SEEYE €993 o =4 EHT 8wy SRF TETERIEL R g Z. 28 S
ey bl % ¢ i3 BFftrSs s Eagiggﬂgﬁ; s 3i:§ ¢
Siﬁ%ﬁ E %5 S ga Eogsagg §_§ EXEES e EnEE of vEEg ﬁ
(- et R o § 528 P B o - [
%h g lat £ = i S&E0w ih %P = = = gu ga i
ATTENTION!

This is all very well for a transmission that's anavay, but how do we set up talker and listener?
We use an extra line that overrides everything, elabled the ATN, or Attention line. Normally,
the computer is the only device that will pull ATthie. When it does so, all other devices drop
what they are doing and become listeners. Sigealsks/ the computer during an ATN period look
like ordinary characters - eight bits with the uUsh@ndshake - but they are not data. They are
"Talk,” "Listen,"” "Untalk,” and "Unlisten" commandslling a specific device that it will become
(or cease to be) a talker or listener. The comma@udto all devices, and all devices acknowledge
them, but only the ones with the suitable deviceniners will switch into talk and listen mode.
These commands are sometimes followed by a secpradhiiress, and after ATN is released,
perhaps by a file name. An example might help ginadea of the nature of the communications

J. Derogee Page 7 2012-08-08

that take place. To open for writing a sequerdiak file called "XX," the following sequence
would be sent with ATN on:DEVICE-8-LISTEN;SECONDARADDRESS-2-OPEN. When
ATN switches off, the computer will be waiting adadker, holding the Clock line true; and the
disk will be the listener, holding the Data linadr That's good, because the computer has more to
send, and it will transmit: X;X;comma;s;comma;WhetW will be accompanied with an EOI
signal. Shortly thereafter, the computer will kit ATN back on and send DEVICE-8-
UNLISTEN. The file is now open; later, the computell want to send data there. It will transmit,
with ATN on, DEVICE-8-LISTEN;SECONDARY- ADDRESS-2ATA. Then the computer
releases the ATN line and sends

its data; only the disk will receive the data, @inel disk will know to put it onto the file calledXX

The last character sent by the computer will algaad EOI. After the computer has sent enough
data for the moment, it will pull ATN on again asend DEVICE-8-UNLISTEN. Many bursts of
data may goto the file; eventually, the computdi @lose the file by sending (with ATN on, of
course) DEVICE-8-LISTEN;SECONDARY-ADDRESS-2-CLOSETN overrides everything in
progress, A disk file might have lots of charaster give to the computer, but the computer wants
only a

little data. It accepts the characters it wartigntswitches on ATN and commands the disk to
Untalk. The disk has not sent EOI, but it will@bsnect as commanded. Later, when it's asked to
Talk again, it will send more characters.

ATN SEQUENCES

When ATN is pulled true, everybody stops what they doing. The processor will quickly pull the
Clock line true (it's going to send soon), so ityrba hard to notice that all other devices rel¢ase
Clock line. At the same time, the processor ra@sdke Data line to false, but all other devices ar
getting ready to listen and will each pull Datattae. They had better do this within one
millisecond (1000 microseconds), since the progasseatching and may sound an alarm ("device
not available") if it doesn't see this take placéJnder normal circumstances, transmission now
takes place as previously described. The compsitsending commands rather than data, but the
characters are exchanged with exactly the samedirand handshakes as before. All devices
receive the commands, but only the specified dewicks upon it. This results in a curious
situation: you can send a command to a nonexistevite (try "OPEN 6,6") - and the computer
will not know that there is a problem, since ite®es valid handshakes from the other devices.
The computer will notice a problem when you trysend or receive data from the nonexistent
device, since the unselected devices will have pdpoff when ATN ceased, leaving you with
nobody to talk to.

TURNAROUND

An unusual sequence takes place following ATN & tomputer wishes the remote device to
become a talker. This will usually take place omlffer a Talk command has been sent.
Immediately after ATN is released, the selectedadewill be behaving like a listener. After allsit
been listening during the ATN cycle, and the coraput

has been a talker. At this instant, we have "wnoag" logic; the device is holding down the Data
line, and the computer is holding the Clock lind/e must turn this around. Here's the sequence:
the computer quickly realizes what's going on, palis the Data line to true (it's already there), a
well as releasing the Clock line to false. Theidewaits for this: when it sees the Clock line go
true, it releases the Data line (which stays truavay since the computer is now holding it down)
and then pulls down the Clock line. We're now im starting position, with the talker (that's the
device) holding the Clock true, and the listen&e (tomputer) holding the Data line true. The

J. Derogee Page 8 2012-08-08

computer watches for this state; only when it hasegthrough the cycle correctly will it be ready
to receive data. And data will be signalled, ofirse, with the usual sequence: the talker releases
the Clock line to signal that it's ready to sende Togic sequences make sense. They are hard to
watch with a voltmeter or oscilloscope since yon'tceell which device is pulling the line down to
true. The principles involved are very similar km$e on the PET/CBM IEEE-488 bus - the same
Talk and Listen commands go out, with secondaryesses and similar features. There are fewer
"handshake" lines than on IEEE, and the speeavees| but the principle is the same.

TALKER LISTENER

ait lor

Dout B Din —

Din-= high

|
-:5-:,9 - Dout I Dout = low J

Tunegul Error H
Device not Presenl _j
2 Cin _
—]
,‘?11
h)
K -— Dout r Doul — high I
.
3 .
2] Cin Cin - low \ ,
Cout ! alter 2868 VIC is asserting EQl
Last T
byle batore }:.‘,
Untalk' & tinlisten ? -“'
EOI sel Din P . Dout
— I b
k&
bt

Jﬂ - Dout I Dout — high) J

Cout 3 Cin no
. WO
E

yes

R yes
W
R .
Oulpul data Dout BE Din — Input data byte
—_— o ‘

g

byte ;1
&

A
_ 4 [
o 0in ‘q Dout Dout == law J
N R .
ves ‘\ Delay GOus’ J
R ,- Dowt & Coul — high
L
® : ®

J. Derogee Page 9 2012-08-08

NORMAL
"—‘ BYTE SENT UNDER ATTENTION (TO DEVlGESJ—"‘ |__DATA BYTES

ATH
|
CLOCK Te
~Tar | |Tnel |4 Tv ~|Trl-
s T [HIEEEEET
I | L:.EB MSB
T e Tew
! DATA VALID e
LISTENER READY-FOR-DATA LISTENER DATA-ACCEPTED
END-OR-IDENTIFY HANDSHAKE (LAST BYTE IN MESSAGE)
ATN
TALKER HE,&DY-IO-SEND TALKER SENDING
f R
~—L-Tgg Ts+| Ty | |
pATA |af]s]]s '
MSEB L | 5 |
el TvE+TE|;H—-—TRv ~I Tg ket TR
LISTENER READY-FOR-DATA
EOI-TIMEOUT HANDSHAKE SYSTEM LINE
LISTENER READY-FOR-DATA RELEASE

TALK-ATTENTION TURN AROUND (TALKER AND LISTENER REVERSED)

ATN DEVICE ACKNOWLEDGES IT IS NOW TALKER
l TALKER READY-TO-SEND

CLOCK |||||||| | TNE
|

- T r*f‘ Toc | Toa |~ 4| 4Ty
oata [a][s][e]{r] [T« TSUUIEIEI Ulﬂlﬂu _
i MSB LSB MSEB
|T|.: [_"ITH;‘_ _.-ITFI-_

READY FOR DATA
BECDMES LISTENER, CLOCK = HIGH, DATA LOW

J. Derogee Page 10 2012-08-08

TALKER READY.-TO-SEND

!+ TALKER SENDING

TNE\PH Ty | =Tegl~ | ¥ [4]+Tv
R L [
. LSB MSE ' |
"'TH:["' DATA VALID ~ITe el Thl--
LISTENER READY-FOR-DATA LISTENER DATA-ACCEPTED

CBM Serial Bus Control Codes
Description Symbol Min. Typ. Max.
ATN RESPONSE (REQUIRED) Tar - - 1000us
LISTENER HOLD-OFF I" 0 - infinite
NON-EOI RESPONSE TO RFD The - 40us 200us
BIT SET-UP TALKER' Ts 20us 70us -
DATA VALID Ty 20us 20us -
FRAME HANDSHAKE? Tk 0 20 1000us
FRAME TO RELEASE OF ATN [y 20us - -
BETWEEN BYTES TIME kB 100us - -
EOI RESPONSE TIME Je 200us 250us -
EOI RESPONSE HOLD TIME Te 60us - -
TALKER RESPONSE LIMIT Ry 0 30us 60us
BYTE-ACKNOWLEDGE* Ter 20us 30us -
TALK-ATTENTION RELEASE Tk 20us 30us 100us
TALK-ATTENTION ACKNOWLEDGE Toc 0 - -
TALK-ATTENTION ACK. HOLD Toa 80us - -
EOI ACKNOWLEDGE Ter 60us - -
Notes:

1: If maximum time exceeded, device not presemrerr

2: If maximum time exceeded, EOI response required.

3: If maximum time exceeded, frame error.

4: Ty and Trr minimum must be 60us for external device to balleet.
5: Te minimum must be 80us for external device to bistarier.

J. Derogee Page 11 2012-08-08

4 Serial bus pinout

Serial Bus Pinouts

Pin | Pin name and function 2
1 SRQ : Serial Service Request In 5
2 GND : Ground]
3 ATN : Serial Attention In/Out ©
4 CLK ; Serial Clock In/Out £
5 DATA : Serial Data In/Out IEC connector

6 RESET : Serial Reset (on rear of CBM computer)

SRQ: Serial Service Request In:
This signal is not used on the C64. On C128 ieaced with Fast Serial Clock for the 1571 digkedr

ATN: Serial Attention In/Out:

Sending any byte with the ATN line low (sending endttention) causes it to be interpreted as a Bus
Command for peripherals on the serial bus. WherC#éw brings this signal LOW, all other deviceststar
listening for it to transmit an address. The dewdddressed must respond in a preset period of time;
otherwise, the C64 will assume that the deviceestolrd is not on the bus, and will return an errdné
STATUS word.

CLK: Serial Clock In/Out:
This signal is for timing the data sent on theadyus. This signal is always generated by thevacti
TALKER. RISING EDGE OF THE CLOCK means data bivadid.

DATA: Serial Data In/Out:
Data on the serial bus is transmitted bit by ba &tne on this line.

RESET: Serial Reset:

Some say that you may disconnect this line to yauve disk drive, but in fact resetting the driveemh
you reset your computer is very logical and isdhly way to reset your drive whithout switching it
OFF and ON.

J. Derogee Page 12 2012-08-08

5 Bytes sequences of specific operations

CBM Serial Bus Control Codes

Base address | Command name and details

20 LISTEN + device number (0-30)

3F UNLISTEN

40 TALK + device number (0-30)

S5F UNTALK

60 OPEN CHANNEL / DATA + Secondary Address / chdr{fel5)

EOQ CLOSE + Secondary Address / channel (0-15)
FO OPEN + Secondary Address / channel (0-15)

/

T
l

Note: the device (1541) is called by the compu@&4(

J. Derogee Page 13

byte is send under attention (ATN low)
bus turn around (computer is set to slave)
bus turn around (computer is set to master (nosmahtion)

2012-08-08

5.1 Normal operation:

5.1.1 Loading a program

LOADfilename”,8,1

/28 /FO filename /3F
/48 /601read dat@ /5F
/28 IEO /3F

The IEC-bus traffic is shown below:

01 08
start address of this program 0801

OF 08 OA 00 9F 20 31 35 2C 38 2C 31 35 00
eol

20 08 14 00 84 31 35 2C 41 2C 42 24 2C 43 2C 44 00
eol

30 08 1E 00 99 20 41 2C 20 42 24 2C 43 2C 44 00
eol

39 08 28 00 A0 20 31 35 00 00 00
end of file

When listed this appears to be the following progra m

10 OPEN 15,8,15

20 INPUT#15,A,B$,C,D
30 PRINT A,B$,C,D

40 CLOSE 15

5.1.2 Saving a program

SAVE"filename”,8,1
/28 /FO filename /3F

/28 /60 send data /3F
/28 IEO /3F

J. Derogee Page 14

2012-08-08

5.1.3 Loading of a directory

LOAD"$",8
LIST

The output on the screen of the C64 :

The IEC-bus traffic is shown below:

01 04 0101 0000 12 22 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 22 20 30 30 20 32 41 00
loadadr start drive0 RVS" " 00 2AEOL

0101 75 00 20 22 41 52 4D 59 20 4D 4F 56 45 53 20 31 22 20 20 20 20 20 50 52 47 20 20 20 20 00
starteblocks "ARMY MOVES 1 PRG EOL

01 01 87 00 20 22 41 52 4D 59 20 4D 4F 56 45 53 20 32 22 20 20 20 20 20 50 52 47 20 20 20 20 00
start blocks "ARMY MOVES 2 PRG EOL

01 01 29 00 20 20 22 41 52 4D 59 20 4D 4F 56 45 53 20 50 49 43 22 20 20 20 50 52 47 20 20 20 00
start blocks "ARMY MOVES P Ic" PRG EOL

01 01 01 00 20 20 20 22 45 52 52 4F 52 43 48 41 4E 4E 45 4C 22 20 20 20 20 20 50 52 47 20 20 00
start blocks "ERRORCHANNEL PRG EOL

01 01 72 01 42 4C 4F 43 4B 53 20 46 52 45 45 2E 20 20 20 20 20 20 20 20 20 20 20 20 20 00 00 0O
start blocks BLOCKS FREE. End Of File

l

Note: you may have noticed that every line is exactlgyd@s long. In order for the Final Cartrdige Il
(and other programs) to be supported correctlylibigaviour should be copied exactly. Although the
kernal routines doe not require this. When youdeawt the spaces (20) before the EOL (00) you will
notice no difference when loading the directorytvifie LOAD”$”,8 command. However a program
that loads the directory and interprets it's datanediately might generate strange behaviour dtteeto
missing bytes. So in short, keep every line 32$gied all will be fine.

J. Derogee Page 15 2012-08-08

If you would have a logic analyzer connected tolE@-bus, you would have seen the following
signals. These images were taken using a PC witltked parallel port logic analyzer, the samplesate
barely suffiecient so these aren’t the best IECdaygures in the world. However the give a good

indication of the signals in this situation.

RESET reset
BTN |] atn
ELOCK (g T TRITITN | HTTHTTTT] U I clock
DATA L M L ML I M1 data
0x28 0xf0 g Ox3f
gridwidth = 435 68 uS vigible points = 2048 stepsize = 1 ‘ ‘ gridwidth = 472 45
rezet '
atn |
clock |"""" ||"|||"|| |]| ||||||||| |||||||| ||||||||"|||||||| |
data M 110) S) W O
D43 060 read data. .
1 ‘ gridwidth = 472 45 u5 vigible points = 2048 stepsize = 1 1 ‘
reset
atn 1 1 1 I
BRI I LI I i g THTTTI i Ty T
121)) M |) | | Y e - e
... read data x5t 0x25 Oxed O3t
‘ ‘ gridwidth = 472 45 uS visible points = 2048 stepsize = 1
J. Derogee Page 16 2012-08-08

5.2 “FILE NOT FOUND"” situation:

Read file from device#8

LOADfilename”,8,1

128 IFO filename /3F

/48 /601 release data and clock Thissituation isrecognized by the computer as an error
128 /EO /3F

5.3 Abort current action (for example: pressing rustop during LOAD):

Read file from device#8

LOAD"filename”,8,1

When run/stop is pressed, the computer makes AWN@oVolt). The device that is talking stops
sending bytes and the device that was talking inatlgdoecomes a listener (the bus does another
turnaround resulting in the computer as talkertlieddevice as listener). The device is now waiforg
further commands.

J. Derogee Page 17 2012-08-08

5.4 Reading the error channel:

When the following commands are given the IEC-ba8it is as follows:

OPEN 15,8,15 Thisline does not start I1EC traffic, it prepares the computer for communication
INPUT#15,A,B$,C,D

PRINT A,B$,C,D

CLOSE 15

The response on the screen of the C64:

00, OK,00,00

The bus traffic:

148 /6F 0 30 30 2C 20
TALK #8 DATA chl5 Turn ‘O’ ‘0’ ‘SPACFE’

But when executed as a program it is slightly défe
10 OPEN 15,8,15

20 INPUT#15,A,B$,C,D

30 PRINT A,B$,C,.D

40 CLOSE 15

The programs response on the screen of the C64:
00, OK,00,00

The IEC-bus traffic:
90 6F 30 30 2C 20 4F 4B 2C 30 30 2C 30 30 0D BEBBF

J. Derogee Page 18 2012-08-08

6 The difference between a 2-line and a single lc@mmmand to the 1541 drive :

Scratch a file name “T” on a media inside device#8

OPEN 15,8,15 «this line does not start IEC traffic, it preparee tomputer for communication
PRINT#15,"S:T”

128 /6F 53 3A 54 oD 13F

LISTEN #8 DATA chl5 'S’ v T ‘CR’ UNLISTEN

OPEN 15,8,15,"S:T”
128 IFF 53 3A 54 I3F
LISTEN #8 OPEN chl5 ‘S’ o T UNLISTEN

Note: The second method can only be used for the éraare! (15) and is not use for data transfer. For
data transfer the first method is used. Howeverdpening of files can be done with the single line
commandline. Exampl®©PEN 8,9,10,"FILENAME,S,W”

J. Derogee Page 19 2012-08-08

To send a data byte to a drive, that device must e "listened”. If the Secondary address (frareh
referred to as: SA or channel) is 15, the drived wilerpret the data as a DOS command. A DOS
command is executed when the drive is UNLISTEN&FJ$

If the channel is not 15, DOS will ignore it unlggau first sent an OPEN.

An OPEN is sent to tell DOS where you want youadatgo.

That is done by LISTENing the device. With -ATN hjag character string must be sent. That will
be either a filename (to open a write file), or stinng like "#", "#2", etc. That tells DOS to veit
your data to one of the five DOS buffers. TherthwATN low, send an UNLISTEN.

channel = 0 is reserved for a reading a PRG file.

channel = 1 is reserved for a writing a PRG file.

channel = 2-14 need the filetype and the read/Mlatgin the filename as ",P,W" for example.
channel = 15 for DOS commands or device status info

After the OPEN is sent, you can send a LISTEN u#iiegchannel used in the OPEN.
DOS has a table of opened files, and will use tl@nel to write your data to the corresponding
file.

The purpose of a CLOSE, for a file named "#", isré@ up that DOS buffer. For a file whose
name appears in the disk directory, a CLOSE wilb#e7 of the filetype byte in the directory
descriptor, update the block count, and save BAkkha disk. DOS will even turn off the drive-
LED.

You can keep files open in several devices, antkwlata first to one and then another. Just
UNLISTEN a device before LISTENing another. Yound¢eve a drive with a "LISTEN" device
address of 8 and a "TALK" device address of 9. Aaotrive can use 8 for both "LISTEN" and
"TALK" device addresses. That is how you can dmadla file to both devices at the same time,
and still be able to read the individual error aels.

The KERNAL routines, when the computer is sendiatadalways buffer one byte. The KERNAL

UNLISTEN, UNTALK, LISTEN, and TALK routines checlof a buffered byte. If one is present,
it is sent delayed. Then the routine does its @gob.

J. Derogee Page 20 2012-08-08

To open afile in a disk drive, there is no neexb @b open a file in the computer. However, that i
usually done for the sake of convenience. BUKBRNAL LOAD and SAVE routines open read and
write files in the IEC (serial) device, without alspening files in the computer. To open a filam

IEC device, the -ATN line must be taken low (bytiset bit 3 of $DD00). Then, the CLK line is taken
low (bit 4 of $DDO0O is set), and the computer wéitsone millisecond. After which the device numbe
ORed with $20 is sent via slow serial. With -ATtNl $ow, the channel ORed with $FO0 is then sent;
-ATN is then taken high. Next, the filename striagent to the drive, still using slow serial. eT$tring

is terminated by "=", by ",", or by a count of 1Gacacters, whichever comes first. If the drive DOS
encounters ",a" or ",a,b" (where "a" and "b" mayabg characters), it uses that information to
determine file type and data direction. If thereloter is not valid it is tossed; there is no errbirst
direction is checked; "w" is "write" and "r" is ‘ad". That may be overridden by the channel; an
channel of O defines "read" and an channel of indsf'write". For any other channel (2 to 14}hiére

is no direction character, "read" is set. DOS tloeks for a file type characater; "u" is "usr”, 'ig"

"prg", and "s" is "seq". If the direction is "réadnd there is no file type character, ANY filgpgyis
acceptable. An exception occurs for no file typaracter and an channel of O; that defines "ptigthe
direction is "write", and there is no file type caeter, "seq" is set. An exception occurs fofilgotype
character and an channel of 1; that defines "phg'the special case of the string's being ",wé, th
infamous "comma" filename will appear in the dicegtof a 1541 disk. This C-64 BASIC program will

write 144 files named "," to a freshly formattegldi The files cannot be directly deleted.

10 fori=1to144:0pen8,8,8,",w":close8
20 next

After the string is sent, the device is UNLISTENedTN is taken low, CLK is taken low, the
computer waits for one ms, and $3F is sent to #wicd. The file is now opened in the device; the fi
may be closed by doing a modified OPEN. No stiingent, and the channel is ORed with $EO rather
than with $F0. Between the OPEN and the CLOSH; dety be read from a "read" file by TALKing
the drive, or written to a "write" file by LISTENgthe drive. Also, a device may be UNTALKed or
UNLISTENed. For LISTEN, the device number ORedWi20 is sent as with OPEN or CLOSE.
Then, with -ATN still low, the channel is sent OReith $60. -ATN is then taken high. For TALK sit'
the same, except that the device number is ORdd$4d. Also for TALK, after the channel is sehig t
bus must be "turned around". That is accomplighethking the DATA line low (setting bit 5 of
$DDO00), taking the -ATN line high (clearing bit 3®DDO00), taking the CLK line high (clearing bit 4
of $DDO00), and looping until the CLK line is lowrtil bit 6 of $DDO0O0 is clear). For UNLISTEN and
UNTALK, just one byte is sent (in the same manrsethe@ device number is sent for LISTEN, TALK,
etc.). That byte is $3F for UNLISTEN and $5F fdlTALK; ALL devices on the bus are commanded
either to close their ears or to shut up. Afterlikie is sent, -ATN is taken high.

J. Derogee Page 21 2012-08-08

7 How to change the device number without changitg jumpers

This actually works on all the drives. It works alhthe variations of the 1541, plus the 1571, 1581
and all the CMD drives including the RAMLIink ancetRAMDrive.

If you want to disable a drive, modify line 20 savill accept a value of 1. Since no software will
ever attempt to access device 1 the drive will neegpond and will sit there quietly even though

it is still turned on. If you still want to be altie bring it back to life, change the device numioe

or 7. Very few programs ever look for anything eldevice 8.

5 INPUT "OLD DEVICE NUMBER";0DV
10 INPUT "NEW DEVICE NUMBER";DV

20 IF DV<8 OR DV>11 THEN 10

30 OPEN 15,0DV, 15

40 PRINT#15,"M-W"CHR$(119)CHR$(0)CHR$(2) CHR$(DV+EHR$(DV+64)
50 CLOSE 15

J. Derogee Page 22 2012-08-08

8 Commodore 64, serial bus related KERNAL functions

J. Derogee Page 23 2012-08-08

Address

$EDO9

$EDOC

$ED40

$EDB9

$EDC7

$EDDD

$EDEF

$EDFE

$EE13

$EE85

$EESE

$EE97

$EEAO

Function

Send TALK command to serial bus.
Input: A = Device number.

Output: —

Used registers: A.

Send LISTEN command to serial bus.
Input: A = Device number.

Output: —

Used registers: A.

Flush serial bus output cache, at memory addre385$@0 serial bus.

Input: —
Output: —
Used registers: A.

Send LISTEN secondary address to serial bus.
Input: A = Secondary address.

Output: —

Used registers: A.

Send TALK secondary address to serial bus.
Input: A = Secondary address.

Output: —

Used registers: A.

Write byte to serial bus.
Input: A = Byte to write.
Output: —

Used registers: —

Send UNTALK command to serial bus.
Input: —

Output: —

Used registers: A.

Send UNLISTEN command to serial bus.
Input: —

Output: —

Used registers: A.

Read byte from serial bus.
Input: —

Output: A = Byte read.
Used registers: A.

Set CLOCK OUT to high.
Input: —

Output: —

Used registers: A.

Set CLOCK OUT to low.
Input: —

Output: —

Used registers: A.

Set DATA OUT to high.
Input: —

Output: —

Used registers: A.

Set DATA OUT to low.
Input: —

Output: —

Used registers: A.

J. Derogee Page 24

$EEA9

Read CLOCK IN and DATA IN.
Input: —

Output: Carry = DATA IN; Negative = CLOCK IN; A =IC@CK IN (in bit #7).

Used registers: A.

2012-08-08

9 Commodore additional IEC-bus info

Some additional info spread by commodore...

TIISY.

ssue 6, 1985 : Computer 1 = commodor‘e

I
Model: C-64, C-16, Plus 4 TEGHT“P'GS
SCHEMATICS FOR C-64 C-16 PLUS 4 ©1980COMMODOREBUS\NESSMACHINESINC
These computers have been affected by an Engineering
Change Order that adds 4 diodes to the serial port. These
protection diodes are not required as field upgrades. They

are 1IN914s and were added as a circuit improvement.

The Schematic and PCB Layout for the C-64 in the
Service Manual (Pages 28 and 32) include these diodes.
However, the C-16 and Plus 4 Service Manuals were completed

before the changes were made. The Schematic corrections are

shown below:
‘
’ Py

3
3~5j
e £ 26 o
v
ary 2¢;,
Y
C—-16 SCHEMATIC
FB22 } ‘ 2l rpy
Z——~E:}l 3|
| f—NC = ta
-C. |
B3 PoIN
EE;L;}L BUS| Jacr<}
FEMALE FB24 Jaee
FeM 5 [_oaTA B 80@" 30| gy
cNz 4 | CLK FBes G@S 10 vz
e =
FB2%
3 |_ATN o< Jm\)%@n -1
— Test MTR 27
ATN < F—— ol "i%‘ P3
+5V b
aes paRERC | LAl csTRD 26,
jmpﬂﬂﬂf

DIN

FREFEFREFREFMME

1794
2RENIF et AGie

- N7

& SERAL BES & PN
3

h
o

E
2

X
cCrPU 750/

—
~N -

y

»

b S QN |\

e

R24 & 4 -

R2s LAy |

CST WRT < F—] "'~T'<:pp
PLUS 4 SCHEMATIC

TSIy

J. Derogee Page 25 2012-08-08

25
1 PG

THE SERIAL BUS

The C128 Serial Bus is an improved version of the C64/VIC 20 serial bus. The C128 improves this
bus by allowing communication at much greater speeds with specially designed peripherals, the most
important being the disk drive, while still maintaining capability with older, slower peripherals used
by the VIC 20 and the C64.

Pin No. Signal Description

Serial Interface Connector 1 SERIAL SRQ | The slow serial bus does not use the SERVICE REQUEST line.

The fast serial bus uses it as a fast bidirectional clock line.

2 GND Chassis ground.

3 SERIAL ATN | The ATTENTION line is a low active handshake used to
address a device on the bus.

4 SERIAL CLK | This is the slow serial CLOCK. It is used by slow serial devices
to clock data transmitted on the serial bus.

5 SERIAL The bidirectional serial DATA line is used by both slow and

DATA fast devices to transmit data in sync with a clock signal.

6 RES The RESET line is used to reset all peripherals when the host

resets.

je— BYTE SENT UNDER AITENTION (TD DEVICES) ——————{ [c— NORMAL DATA BYTES

AN r
AN — l—
: ; TALKER READY-TO-SEND

JE— : [TALKER SENDING

e il
o —w | TETEEEEEE L

L DATA VALID |L
LISTENER READY-FOR-DATA

L DATA VALID
R LISTENER READY- FOR-DATA

LISTENE LUSTENER DATA- PTI
DATA-ACCEPTED ENER DATA-ACCEPTED

END-OR-IDENTIFY HANDSHAKE (LAST BYTE IN MESSAGE)
AN TALK-ATTENTION TURN ARGUND (TALKER=> LISTENER TO LlST(NER(;VAu([R)

TALKER READY-T0-SEN

—
0 . H

[~TALKER SENDING ATN ﬂj i DEVICE ACKNOWLEGES 1T I3 NOW TALKER

L T raLkeR Reaov-To-seND

otk | i
. | | R ZI0CK M ! i
FIEITETIES E : DATA ;
bl [IPTTeThd L .
L L LI3TENER READY-FOR DATA |
L E0] - TIMEOUT HANDSHAKE READY FOR DATA
USTENER READY-FOR-DATA BECOMES LSTENER CLDCK = HIGH,DATA LOW

SYSTEM LINE RELEASE

Bus Operations

There are three basic bus operations that take place on the serial bus, in both fast and slow modes.
The first of these is called Control. The C128 is the controller in most circumstances. The controller
of the bus is always the device that initiates protocol on the bus, requesting peripheral devices to
do one of the two other serial operations, either Talk or Listen.

All serial bus devices can listen. A Listener is a device that has been ordered by the Controller to

receive data. Some devices, such as disk drives, can talk. A Talker can send data to the Controller.
Both hardware and software drive this bus protocol.

54

THEYERIAS BUS (Continued) Page 26 2012-08-08

THE SERIAL BUS (Continued)

The Standard (Slow) Serial Bus

The slow serial bus uses the port lines of the 6526 at U4, C1A 2, to drive ATN, CLK and DATA.
The operation is the same as that of the C64 and when in C64 mode, slow to fast interference is
automatically removed.

The Fast Serial Bus

In order to talk as a fast talker, the Controller must be addressing a fast device. When addressing
any device, the C128 sends a fast byte, toggling the SRQ line eight times, with the ATN line low.
If the device is a fast device, it will record the fact that a fast Controller accessed it and respond
with a fast acknowledge. If the device is a slow device, no response is delivered and the C128 then
assumes it is talking with a slow device. The status of the fast or slow is retained until the device
is requested to untalk, unlisten, or if an error or system reset occurs.

The fast serial bus, in order to achieve its speed increase, uses different hardware than that of the
slow serial bus. The fast serial method is to use the serial port lines of the 6526 U1, CIA 1, pin 39,
to actually transfer the serial data. This increases the transfer rate dramatically.

The FSDIR bidirectional control line signals the MMU at U7, pin 44, that a fast device is present.
The MMU then outputs control signals to the data direction buffer hardware for fast serial operation.

55

J. Derogee Page 27 2012-08-08

10 How fastloaders work...

10.1 The Final Cartridge Ill (FC3) load/save prototo

Credits go to: Thomas Giesel, who analysed and dented the load/save protocol
Ingo Korb, notes about the Freezer-variation

This document describes the fast loader and sawtgol of the FC3. The description may not be aafein any point.
10.1.1Loading directories

The loading of directories using the FC3 is...

10.1.2Transferring the load/save routines to thawdr

Before the device is capable of understandingdabttdader protocol it requires some additionalinsast

to be uploaded into the device. These routinesheréoad and save routines and are uploaded useng t
“M-W” commands. Once these routines are uploadeg Will be executed using the “M-E” command.
Now the device is capable of fastloading/saving.

The uploaded code is shown below:

calculating the required CRC is done using:
datacrc = _crcl16_update(datacrc, command_buffer[i])

void crc16_update(crc, new_byte)

{
crc = (unsigned char)(crc >> 8) | (crc << 8);
crc "= new_hyte;
crc = (unsigned char)(crc & 0xff) >> 4;
crc A= (crc << 8) << 4;
crc = ((crc & Oxff) << 4) << 1;
}

The detection of the loadertype is done using #teutated CRC:
if (datacrc == Oxflbd) {
detected loader = FL_FC3 LOAD;

else if (datacrc == Oxbe56) {
detected loader = FL_FC3_ SAVE;

}

J. Derogee Page 28 2012-08-08

For this reason the sd2iec implements these twar@ms (check doscmd.c). When a C64 uses the M-
W command the sd2iec calculates a chacksum ovéaytdk written. Often fastloaders use several M-
Ws to write the while code, so the checksum is tgalan each command. Of course the data being
written using M-W is discarded but not kept. Whedre tC64 uses M-E <start addr> the pair
(<checksum>, <start addr) to identify the fast Erad’hen a native (Atmel) implementation of thet fas
loader is called instead of the 6502 implementatidhese implementations can be found in
fastloader*.* Maybe it's best you check these sesirand maybe you want to port them to PIC.
Remember that the license is GPL... Possibly ya aso interested in DreamLoad. This is also

implemented in sd2iec (no binary released yet,ybutcan get the latest sources). With dreamload you
can start some Demos using this IRQ fast loader.

J. Derogee Page 29 2012-08-08

10.1.3Loading

First of all the FC3 opens the file and reads th&t fwo bytes to check the load address. It da#s n
close the file before starting the fast loaderthst one just starts with the last sector loaded.

When the loader starts it sets both data and d¢lmblgh, to signal that it is currently busy.

The FC3 does always transfer whole blocks, evemtfall bytes are used. Each block is transfemed i
65 tuples with 4 bytes each.

Before sending a block the drive pulls CLOCK lowdamaits for the host to respond by pulling DATA
low. Then the drive and host release these CLOGKEaATA.

The first tuple is sent about 180 us after thisds&iake. As each tuple has its own synchronizahimn t
timing doesn't need to be accurate. Between twesupere are about 190 us.

: not used (always 7, data marker on disk)

: block counter, starting at 0

: 0 if all bytes must be used, number of byteewtise
. First byte of block

1st tuple:

WNEFEO

2nd..64th tuple: : byte from block
. byte from block
. byte from block

: byte from block

WNEFO

. last byte of block
: not used
: not used
: not used

65th tuple:

WNEFO

Each tuple is syncronized by the drive pulling CLOBw, then 2 bits are transfered at once until4he
bytes are done. Bit 0 is on CLOCK, Bit 1 on DATAdaso on. Electrical 0 means binary 0. Finally
CLOCK and DATA are released to high level.

EOF is marked by pulling DATA low instead of stagia new handshake.
I/O errors are marked by pulling DATA and CLOCK low

J. Derogee Page 30 2012-08-08

The "|" marks are the point of time when the busriten or read.

C64 read (PAL)
1 (+12) 13 (+12) 25 (+12) 37 (+12) 4

=== === === =--=-]
1.7 132.19.2 254.31.4 37.6.436 4

(sync)

1541 write
| | | | |-

0 (+12) 12 (+12) 24 (+13) 37 (+12) 49

CLK low 1stpair 2ndpair 3rd pair 4t

sd2iec write

0 (+12) 12 (+12) 24 (+12) 36 (+12) 48

9 (+14) 63(+12) 75 (+12) 87 (+12) 99

[H0EL======T === === ===
9.7.55.7 63.9..69.976.1..82.1 88.3..94.3 00.

(+13) 62 (+12) 74 (+13) 87 (+12) 99

h pair 5th pair 6th pair 7th pair 8th

(+14) 62 (+12) 74 (+12) 86 (+12) 98

C64 read (PAL) cont'd
137 (+12) 149 (+14) 163 (+12) 175

11111 111 111 11
39.1.45.1 51.2.57.2 65.4.71.4 77.6

1541 write
|

| | | |
137 (+12) 149 (+13) 162 (+12) 174 (+1
11th pair 12th pair 13th pair 14th pai

sd2iec write

| | | |
L | I I I
136 (+12) 148 (+14) 162 (+12) 174 (+1

J. Derogee

(+12) 187 (+12) 199

1111 (i
.83.6 89.8..95.8 02.0..08.0

I
199 (+16)

3) 187 (+12)

r 15th pair 16th pair
- :

2) 186 (+12) 198 (+14)

us

Page 31

(+14) 113 (+12) 125 (+12) cycle
===l ===
5..06.5 14.7.20.7 26.9..32.9 us
I I
(+13) 112 (+12) 124 (+13) us
pair 9th pair 10th pair
I I
(+14) 112 (+12) 124 (+12) us
cycle
us
us
2012-08-08

Fastloader in freezed files

Programs freezed using the "F.DISK" command ofR68 use a fast loader similiar to the normal FC3
fastloader. Like the normal fastloader it opensténget file for reading with the standard protoaod it
also uses the same protocol and timing to transmfour-byte tuple to the C64. However, the
handshaking in between and the contents of thietfipde are different. The freezer-variant transntiiie
data from disk directly which means that the fitgile contains a 0x07, the track and sector ohthe
sector in a file and the first data byte. Everythiout the data byte is ignored by the C64-side code

Both end-of-file and error conditions are signalbsdpulling DATA low. A full clock/data handshaks i
done before the transmission of every tuple whigams that the fixed delays between tuples can be

dropped.

The freeze-loader closes and reopens the datadiigy the standard protocol after the fast protbes
finished transmitting the file.

J. Derogee Page 32 2012-08-08

10.1.4SAVING

The FC3 first opens the file for writing, if thisonks well, it starts its drive code. This code rees and
saves the data.

The first byte marks the size of the block. If thige is 0, a full block of 254 bytes follows whighnot
the last one. If other numbers are received, rbytés will follow and this will be the last blocklote
that transferred blocks do not correspond to deskkas's, as each full block has 254 bytes, alsditsie
one which contains the start address.

The drive releases DATA to show that it's readydoeive data. Then the C64 releases CLOCK to
synchronize the file transfer.

The following diagram shows the position of eadhoeing transfered. The bits are send low-active.

C64 write (PAL)

0 (+12) 12 (+10)22 (+16) 38 (+10)48 (+10) 58 cycle
| S o= —

0 11.8 217 374 473 57.1 us
CLOCK high D=5 D=4 D=1 D=0 CLOCK low

(sync) C=7 C=6 Cc=3 Cc=2 (busy)

sd2i ec read
| | | _|

|
0 (+17) 17 (+13') 30 (+'12) 42 (+10) 52 us

After reading the last pair of bits the drive pullATA down to show it's busy. Apparently there's no
mechanism to signal situations like "disk full".

J. Derogee Page 33 2012-08-08

